Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Experimental study on combustion characteristics of pool fires in a sealed environment

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2023

Experimental study on combustion characteristics of pool fires in a sealed environment

0 Datasets

0 Files

English
2023
Energy
Vol 283
DOI: 10.1016/j.energy.2023.128497

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Long Shi
Long Shi

University Of Science And Technology Of China

Verified
Jinhui Wang
Ruiqing Zhang
Yong Wang
+3 more

Abstract

The results of a series of bench-scale pool fire experiments to explore the burning characteristics under a sealed environment are presented in this work.Although the oxygen fraction in the space gradually decreases by burning consumingin comparison to open conditions, the transient heat release rate can still be calculated using the PER approach using the in-situ measured oxygen fraction. The dimensionless flame height can still be calculated using the McCaffrey's model for open conditions, but a greater coefficient should be used because the flame burns in a ‘hunger’ mode when the oxygen fraction is low. The current non-sealed fire model for centerline temperature rise of pool fires is unsuitable for the sealed environment: the centerline temperature rise decreases more quickly than that predicted by Nasr's model developed for cases with a limited ventilation in the middle and later stages of the fire. A new engineering model has been developed in this study by curve fitting sealed fire test results. Pagni's law can still be suitable to describe the relationship between the frequency of flame oscillation and the diameter of a pool fire in a sealed environment, but the modified coefficients are required.

How to cite this publication

Jinhui Wang, Ruiqing Zhang, Yong Wang, Long Shi, Shaogang Zhang, Jiahao Liu (2023). Experimental study on combustion characteristics of pool fires in a sealed environment. Energy, 283, pp. 128497-128497, DOI: 10.1016/j.energy.2023.128497.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2023

Authors

6

Datasets

0

Total Files

0

Language

English

Journal

Energy

DOI

10.1016/j.energy.2023.128497

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access