0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessPart 1 [1] of this two-part paper presented an experimental study of the cyclic behaviour of a novel beam-to-column sleeve connection system for pultruded glass fibre reinforced polymer (GFRP) tubular profiles, and the numerical simulation of such behaviour. This Part 2 presents an experimental and numerical study on the sway behaviour of full-scale GFRP plane frames comprising the same tubular profiles and the aforementioned connection system. The GFRP frames were tested under quasi-static monotonic and cyclic loading, with and without infill walls, materialized by composite sandwich panels. The results of the tests show that high-load carrying capacity infill walls have a remarkable effect on the frames’ structural behaviour, significantly increasing their stiffness and load carrying capacity, as well as their cyclic performance, namely regarding energy dissipation. On the other hand, such improvement involved extensive damage in the frame elements, particularly in the beams, which at some point compromised their structural integrity. The numerical study included the simulation of the cyclic tests of the unfilled walls, by means of relatively simple finite element (FE) models, comprising frame elements and spring joints simulating the behaviour of the connections, in which the Pivot hysteresis model calibrated in Part 1 [1] was used. The comparison between experimental and numerical results shows that these simple and design-oriented FE models can provide an effective (and conservative) tool for the simulation of pultruded GFRP frames under horizontal cyclic loads.
David Martins, Mário F. Sá, José Gonilha, João R. Correia, Nuno Silvestre, João Gomes Ferreira (2019). Experimental and numerical analysis of GFRP frame structures. Part 2: Monotonic and cyclic sway behaviour of plane frames. Composite Structures, 220, pp. 194-208, DOI: 10.1016/j.compstruct.2019.03.098.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2019
Authors
6
Datasets
0
Total Files
0
Language
English
Journal
Composite Structures
DOI
10.1016/j.compstruct.2019.03.098
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access