0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessWeak interlayer interactions in van der Waals crystals facilitate their mechanical exfoliation to monolayer and few-layer two-dimensional materials, which often exhibit striking physical phenomena absent in their bulk form. Here we utilize mechanical exfoliation to produce a two-dimensional form of a mineral franckeite and show that the phase segregation of chemical species into discrete layers at the sub-nanometre scale facilitates franckeite's layered structure and basal cleavage down to a single unit cell thickness. This behaviour is likely to be common in a wider family of complex minerals and could be exploited for a single-step synthesis of van der Waals heterostructures, as an alternative to artificial stacking of individual two-dimensional crystals. We demonstrate p-type electrical conductivity and remarkable electrochemical properties of the exfoliated crystals, showing promise for a range of applications, and use the density functional theory calculations of franckeite's electronic band structure to rationalize the experimental results.
Matěj Velický, Péter S. Tóth, Alexander Rakowski, Aidan P. Rooney, Aleksey Kozikov, Colin R. Woods, Artem Mishchenko, Laura Fumagalli, Jun Yin, Viktor Zólyomi, Thanasis Georgiou, Sarah J. Haigh, Konstantin ‘kostya’ Novoselov, Robert A. W. Dryfe (2017). Exfoliation of natural van der Waals heterostructures to a single unit cell thickness. Nature Communications, 8(1), DOI: 10.1038/ncomms14410.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2017
Authors
14
Datasets
0
Total Files
0
Language
English
Journal
Nature Communications
DOI
10.1038/ncomms14410
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access