0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessA simple and convenient method has been demonstrated for large-scale synthesis of metal oxide (including TiO2, SnO2, In2O3, and PbO) nanowires with diameters around 50 nm and lengths up to 30 µm. In a typical procedure, tetraalkoxyltitanium, Ti(OR)4 (with R = –C2H5, –iso-C3H7, or –n-C4H9), was added to ethylene glycol and heated to 170 °C for 2 h under vigorous stirring. The alkoxide was transformed into a chain-like, glycolate complex that subsequently crystallized into uniform nanowires. Similarly, nanowires made of tin glycolate were synthesized by refluxing SnC2O4·2H2O in ethylene glycol at 195 °C for 2 h, and nanowires consisting of indium and lead glycolates were prepared by adding In(OOCC7H15)(OiPr)2 and Pb(CH3COO)2 to ethylene glycol, followed by heating at 170 °C for 2 h. The nanowires could be readily collected as precipitates after the reaction solutions had been cooled down to room temperature. By calcining at elevated temperatures, each glycolate precursor could be transformed into the corresponding metal oxide without changing the wire-like morphology. Electron microscopic and XRD powder diffraction studies were used to characterize the morphology, crystallinity, and structure of these nanowires before and after calcination at various temperatures. A plausible mechanism was also proposed to account for the one-dimensional growth of such nanostructures in a highly isotropic medium. This mechanism was supported by XRD, FT-IR, solid state 13C-NMR, and TGA measurements. As a demonstration of potential applications, the polycrystalline nanowires made of SnO2 were used as functional components to fabricate sensors that could detect combustible gases (CO and H2) with greatly enhanced sensitivity under ambient conditions.
Xuchuan Jiang, Yuliang Wang, Thurston Herricks, Younan Xia (2004). Ethylene glycol-mediated synthesis of metal oxide nanowires. , 14(4), DOI: https://doi.org/10.1039/b313938g.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2004
Authors
4
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1039/b313938g
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access