0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessQuantifying the above ground biomass of tropical forests is critical for understanding the dynamics of carbon fluxes between terrestrial ecosystems and the atmosphere, as well as monitoring ecosystem responses to environmental change. Remote sensing remains an attractive tool for estimating tropical forest biomass but relationships and methods used at one site have not always proved applicable to other locations. This lack of a widely applicable general relationship limits the operational use of remote sensing as a method for biomass estimation, particularly in high biomass ecosystems. Here, multispectral Landsat TM and JERS-1 SAR data were used together to estimate tropical forest biomass at three separate geographical locations: Brazil, Malaysia and Thailand. Texture measures were derived from the JERS-1 SAR data using both wavelet analysis and Grey Level Co-occurrence Matrix methods, and coupled with multispectral data to provide inputs to artificial neural networks that were trained under four different training scenarios and validated using biomass measured from 144 field plots. When trained and tested with data collected from the same location, the addition of SAR texture to multispectral data showed strong correlations with above ground biomass (r =0.79, 0.79 and 0.84 for Thailand, Malaysia and Brazil respectively). Also, when networks were trained and tested with data from all three sites, the strength of correlation (r =0.55) was stronger than previously reported results from the same sites that used multispectral data only. Uncertainty in estimating AGB from different allometric equations was also tested but found to have little effect on the strength of the relationships observed. The results suggest that the inclusion of SAR texture with multispectral data can go someway towards providing relationships that are transferable across time and space, but that further work is required if satellite remote sensing is to provide robust and reliable methodologies for initiatives such as Reducing Emissions from Deforestation and Degradation (REDD+).
Mark Cutler, Doreen S. Boyd, Giles Foody, A. Vetrivel (2012). Estimating tropical forest biomass with a combination of SAR image texture and Landsat TM data: An assessment of predictions between regions. ISPRS Journal of Photogrammetry and Remote Sensing, 70, pp. 66-77, DOI: 10.1016/j.isprsjprs.2012.03.011.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2012
Authors
4
Datasets
0
Total Files
0
Language
English
Journal
ISPRS Journal of Photogrammetry and Remote Sensing
DOI
10.1016/j.isprsjprs.2012.03.011
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access