0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessBackground: Following stringent social distancing measures, some European countries are beginning to report a slowed or negative rate of growth of daily case numbers testing positive for the novel coronavirus. The notion that the first wave of infection is close to its peak begs the question of whether future peaks or ‘second waves’ are likely. We sought to determine the current size of the effective (i.e. susceptible) population for seven European countries—to estimate immunity levels following this first wave. / Methods: We used Bayesian model inversion to estimate epidemic parameters from the reported case and death rates from seven countries using data from late January 2020 to April 5th 2020. Two distinct generative model types were employed: first a continuous time dynamical-systems implementation of a Susceptible-Exposed-Infectious-Recovered (SEIR) model, and second a partially observable Markov Decision Process or hidden Markov model (HMM) implementation of an SEIR model. Both models parameterise the size of the initial susceptible population (‘S0’), as well as epidemic parameters. / Results: Both models recapitulated the dynamics of transmissions and disease as given by case and death rates. Crucially, maximum a posteriori estimates of S0 for each country indicated effective population sizes of below 20% (of total population size), under both the continuous time and HMM models. Using a Bayesian weighted average across all seven countries and both models, we estimated that 6.4% of the total population would be immune. From the two models, the maximum percentage of the effective population was estimated at 19.6% of the total population for the UK, 16.7% for Ireland, 11.4% for Italy, 12.8% for Spain, 18.8% for France, 4.7% for Germany and 12.9% for Switzerland. / Conclusion: Our results indicate that after the current wave, a large proportion of the total population will remain without immunity.
Rosalyn Moran, Erik D. Fagerholm, Maell Cullen, Jean Daunizeau, Mark P. Richardson, Steven E. Williams, Federico Turkheimer, Rob Leech, Karl Friston (2020). Estimating required ‘lockdown’ cycles before immunity to SARS-CoV-2: model-based analyses of susceptible population sizes, ‘S0’, in seven European countries, including the UK and Ireland [version 1;peer review: awaiting peer review].
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2020
Authors
9
Datasets
0
Total Files
0
Language
en
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access