0 Datasets
0 Files
$0 Value
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessCity University Of Hong Kong
We propose a novel epidemic model based on two-layered multiplex networks to explore the influence of positive and negative preventive information on epidemic propagation. In the model, one layer represents a social network with positive and negative preventive information spreading competitively, while the other one denotes the physical contact network with epidemic propagation. The individuals who are aware of positive prevention will take more effective measures to avoid being infected than those who are aware of negative prevention. Taking the microscopic Markov chain (MMC) approach, we analytically derive the expression of the epidemic threshold for the proposed epidemic model, which indicates that the diffusion of positive and negative prevention information, as well as the topology of the physical contact network have a significant impact on the epidemic threshold. By comparing the results obtained with MMC and those with the Monte Carlo (MC) simulations, it is found that they are in good agreement, but MMC can well describe the dynamics of the proposed model. Meanwhile, through extensive simulations, we demonstrate the impact of positive and negative preventive information on the epidemic threshold, as well as the prevalence of infectious diseases. We also find that the epidemic prevalence and the epidemic outbreaks can be suppressed by the diffusion of positive preventive information and be promoted by the diffusion of negative preventive information.
Zhishuang Wang, Chengyi Xia, Zengqiang Chen, Guanrong Chen (2020). Epidemic Propagation With Positive and Negative Preventive Information in Multiplex Networks. IEEE Transactions on Cybernetics, 51(3), pp. 1454-1462, DOI: 10.1109/tcyb.2019.2960605.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2020
Authors
4
Datasets
0
Total Files
0
Language
English
Journal
IEEE Transactions on Cybernetics
DOI
10.1109/tcyb.2019.2960605
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access