0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessA theoretical and a mathematical model is presented to determine the entropy generation on electro-kinetically modulated peristaltic propulsion on the magnetized nanofluid flow through a microchannel with joule heating. The mathematical modeling is based on the energy, momentum, continuity, and entropy equation in the Cartesian coordinate system. The effects of viscous dissipation, heat absorption, magnetic field, and electrokinetic body force are also taken into account. The electric field terms are helpful to model the electrical potential terms by means of Poisson–Boltzmann equations, ionic Nernst–Planck equation, and Debye length approximation. A perturbation method has been applied to solve the coupled nonlinear partial differential equations and a series solution is obtained up to second order. The physical behavior of all the governing parameters is discussed for pressure rise, velocity profile, entropy profile, and temperature profile.
M. M. Bhatti, Mohsen Sheikholeslami, A. Zeeshan (2017). Entropy Analysis on Electro-Kinetically Modulated Peristaltic Propulsion of Magnetized Nanofluid Flow through a Microchannel. Entropy, 19(9), pp. 481-481, DOI: 10.3390/e19090481.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2017
Authors
3
Datasets
0
Total Files
0
Language
English
Journal
Entropy
DOI
10.3390/e19090481
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access