Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Entropy Analysis on Electro-Kinetically Modulated Peristaltic Propulsion of Magnetized Nanofluid Flow through a Microchannel

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2017

Entropy Analysis on Electro-Kinetically Modulated Peristaltic Propulsion of Magnetized Nanofluid Flow through a Microchannel

0 Datasets

0 Files

English
2017
Entropy
Vol 19 (9)
DOI: 10.3390/e19090481

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Mohsen Sheikholeslami
Mohsen Sheikholeslami

Babol Noshirvani University

Verified
M. M. Bhatti
Mohsen Sheikholeslami
A. Zeeshan

Abstract

A theoretical and a mathematical model is presented to determine the entropy generation on electro-kinetically modulated peristaltic propulsion on the magnetized nanofluid flow through a microchannel with joule heating. The mathematical modeling is based on the energy, momentum, continuity, and entropy equation in the Cartesian coordinate system. The effects of viscous dissipation, heat absorption, magnetic field, and electrokinetic body force are also taken into account. The electric field terms are helpful to model the electrical potential terms by means of Poisson–Boltzmann equations, ionic Nernst–Planck equation, and Debye length approximation. A perturbation method has been applied to solve the coupled nonlinear partial differential equations and a series solution is obtained up to second order. The physical behavior of all the governing parameters is discussed for pressure rise, velocity profile, entropy profile, and temperature profile.

How to cite this publication

M. M. Bhatti, Mohsen Sheikholeslami, A. Zeeshan (2017). Entropy Analysis on Electro-Kinetically Modulated Peristaltic Propulsion of Magnetized Nanofluid Flow through a Microchannel. Entropy, 19(9), pp. 481-481, DOI: 10.3390/e19090481.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2017

Authors

3

Datasets

0

Total Files

0

Language

English

Journal

Entropy

DOI

10.3390/e19090481

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access