Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Ensemble Classification and IoT-Based Pattern Recognition for Crop Disease Monitoring System

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2021

Ensemble Classification and IoT-Based Pattern Recognition for Crop Disease Monitoring System

0 Datasets

0 Files

English
2021
IEEE Internet of Things Journal
Vol 8 (16)
DOI: 10.1109/jiot.2021.3072908

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Amir Gandomi
Amir Gandomi

University of Techology Sdyney

Verified
Gayathri Nagasubramanian
Rakesh Kumar Sakthivel
Rizwan Patan
+3 more

Abstract

Internet of Things (IoT) in the agriculture field provides crops-oriented data sharing and automatic farming solutions under single network coverage. The components of IoT collect the observable data from different plants at different points. The data gathered through IoT components, such as sensors and cameras, can be used to be manipulated for a better farming-oriented decision-making process. This work proposes a system that observes the crops' growth and leaf diseases continuously for advising farmers in need. To provide analytical statistics on plant growth and disease patterns, the proposed framework uses machine learning (ML) techniques, such as support vector machine (SVM) and convolutional neural network (CNN). This framework produces efficient crop condition notifications to terminal IoT components which are assisting in irrigation, nutrition planning, and environmental compliance related to the farming lands. In this regard, this work proposes ensemble classification and pattern recognition for crop monitoring system (ECPRC) to identify plant diseases at the early stages. The proposed ECPRC uses ensemble nonlinear SVM (ENSVM) for detecting leaf and crop diseases. In addition, this work performs comparative analysis between various ML techniques, such as SVM, CNN, naïve Bayes, and K-nearest neighbors. In this experimental section, the results show that the proposed ECPRC system works optimally compared to the other systems.

How to cite this publication

Gayathri Nagasubramanian, Rakesh Kumar Sakthivel, Rizwan Patan, S. Muthuramalingam, Mahmoud Daneshmand, Amir Gandomi (2021). Ensemble Classification and IoT-Based Pattern Recognition for Crop Disease Monitoring System. IEEE Internet of Things Journal, 8(16), pp. 12847-12854, DOI: 10.1109/jiot.2021.3072908.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2021

Authors

6

Datasets

0

Total Files

0

Language

English

Journal

IEEE Internet of Things Journal

DOI

10.1109/jiot.2021.3072908

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access