0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessIn this work, a self-lubricating composite was manufactured using a novel hybrid 3D printing/in situ spraying process that involved the printing of an acrylonitrile butadiene styrene (ABS) matrix using fused deposition modeling (FDM), along with the in situ spraying of alumina (Al2O3) and hexagonal boron nitride (hBN) reinforcements during 3D printing. The results revealed that the addition of the reinforcement induced an extensive formation of micropores throughout the ABS structure. Under tensile-loading conditions, the mechanical strength and cohesive interlayer bonding of the composites were diminished due to the presence of these micropores. However, under tribological conditions, the presence of the Al2O3 and hBN reinforcement improved the frictional resistance of ABS in extreme loading conditions. This improvement in frictional resistance was attributed to the ability of the Al2O3 reinforcement to support the external tribo-load and the shearing-like ability of hBN reinforcement during sliding. Collectively, this work provides novel insights into the possibility of designing tribologically robust ABS components through the addition of in situ-sprayed ceramic and solid-lubricant reinforcements.
Alessandro M. Ralls, Zachary Monette, Ashish K. Kasar, Pradeep L Menezes (2024). Enhancing Tribological Performance of Self-Lubricating Composite via Hybrid 3D Printing and In Situ Spraying. , 17(11), DOI: https://doi.org/10.3390/ma17112601.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2024
Authors
4
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.3390/ma17112601
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access