Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Enhanced thermal performance of phase change material (PCM) mortar using multi-scale carbon-based materials

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2024

Enhanced thermal performance of phase change material (PCM) mortar using multi-scale carbon-based materials

0 Datasets

0 Files

English
2024
Journal of Building Engineering
Vol 98
DOI: 10.1016/j.jobe.2024.111259

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Long Shi
Long Shi

University Of Science And Technology Of China

Verified
Xiaonan Wang
Yuhan Huang
Long Shi
+2 more

Abstract

Incorporating phase change material (PCM) into construction materials is an effective method for modifying building energy regulations throughout their service life. However, the effectiveness of PCM is constrained by its low thermal conductivity, highlighting the need for efficient enhancement methods. This study introduces thermally conductive carbon-based additions at both the nano-scale and meso-scale with different shapes, including carbon nano-tube (CNT), carbon black nano-particle (CB), and carbon fibre (CF) in PCM mortar. The mixed hydrated inorganic salt serves as the core PCM, while expanded perlite acts as the supporting material for the stable PCM composite, based on the presented research. The multi-scale additions establish thermal conduction pathways that improve temperature regulation performance. The modified samples exhibited a temperature difference of 2.2 °C and a time lag of up to 20 min under natural cooling conditions. Notably, CB positively influenced thermal conductivity, while CNT demonstrated an unexpected minor reduction. The enhancement in thermal conductivity increased with the content of CB, reaching an optimal enhancement of 18 %, except at a CNT content of 0.5 %. Conversely, both CB and CNT consistently improved thermal diffusivity. Furthermore, the compressive strength of the modified samples was significantly enhanced by up to 24 % compared to PCM mortar without carbon modifications. The modification method proposed in this study significantly improves both the thermal and mechanical properties of PCM mortar.

How to cite this publication

Xiaonan Wang, Yuhan Huang, Long Shi, S.S. Zhang, Wengui Li (2024). Enhanced thermal performance of phase change material (PCM) mortar using multi-scale carbon-based materials. Journal of Building Engineering, 98, pp. 111259-111259, DOI: 10.1016/j.jobe.2024.111259.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2024

Authors

5

Datasets

0

Total Files

0

Language

English

Journal

Journal of Building Engineering

DOI

10.1016/j.jobe.2024.111259

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access