RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Enhanced Piezo‐Photoelectric Catalysis with Oriented Carrier Migration in Asymmetric Au−ZnO Nanorod Array

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2020

Enhanced Piezo‐Photoelectric Catalysis with Oriented Carrier Migration in Asymmetric Au−ZnO Nanorod Array

0 Datasets

0 Files

en
2020
Vol 16 (18)
Vol. 16
DOI: 10.1002/smll.201907603

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Zhong Lin Wang
Zhong Lin Wang

Beijing Institute of Technology

Verified
Deli Xiang
Zhirong Liu
Mengqi Wu
+5 more

Abstract

Current photocatalytic semiconductors often have low catalytic performance due to limited light utilization and fast charge carrier recombination. Formation of Schottky junction between semiconductors and plasmonic metals can broaden the light absorption and facilitate the photon-generated carriers separation. To further amplify the catalytic performance, herein, an asymmetric gold-zinc oxide (Asy-Au-ZnO) nanorod array is rationally designed, which realizes the synergy of piezocatalysis and photocatalysis, as well as spatially oriented electron-hole pairs separation, generating a significantly enhanced catalytic performance. In addition to conventional properties from noble metal/semiconductor Schottky junction, the rationally designed heterostructure has several additional advantages: 1) The piezoelectric ZnO under light and mechanical stress can directly generate charge carriers; 2) the Schottky barrier can be reduced by ZnO piezopotential to enhance the injection efficiency of hot electrons from Au nanoparticles to ZnO; 3) the unique asymmetric nanorod array structure can achieve a spatially directed separation and migration of the photon-generated carriers. When ultrasound and all-spectrum light irradiation are exerted simultaneously, the Asy-Au-ZnO reaches the highest catalytic efficiency of 95% in 75 min for dye degradation. It paves a new pathway for designing unique asymmetric nanostructures with the synergy of photocatalysis and piezocatalysis.

How to cite this publication

Deli Xiang, Zhirong Liu, Mengqi Wu, Huanhuan Liu, Xiaodi Zhang, Zhuo Wang, Zhong Lin Wang, Linlin Li (2020). Enhanced Piezo‐Photoelectric Catalysis with Oriented Carrier Migration in Asymmetric Au−ZnO Nanorod Array. , 16(18), DOI: https://doi.org/10.1002/smll.201907603.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2020

Authors

8

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1002/smll.201907603

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access