RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Energy Beamforming for RF Wireless Power Transfer With Dynamic Metasurface Antennas

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2023

Energy Beamforming for RF Wireless Power Transfer With Dynamic Metasurface Antennas

0 Datasets

0 Files

English
2023
IEEE Wireless Communications Letters
Vol 13 (3)
DOI: 10.1109/lwc.2023.3343563

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Rui Zhang
Rui Zhang

The Chinese University of Hong Kong

Verified
Amirhossein Azarbahram
Onel L. Alcaraz López
Richard Demo Souza
+2 more

Abstract

Radio frequency (RF) wireless power transfer (WPT) is a promising technology for charging the Internet of Things. Practical RF-WPT systems usually require energy beamforming (EB), which can compensate for the severe propagation loss by directing beams toward the devices. The EB flexibility depends on the transmitter architecture, existing a trade-off between cost/complexity and degrees of freedom. Thus, simpler architectures such as dynamic metasurface antennas (DMAs) are gaining attention. Herein, we consider an RF-WPT system with a transmit DMA for meeting the energy harvesting requirements of multiple devices and formulate an optimization problem for the minimum-power design. First, we provide a mathematical model to capture the frequency-dependant signal propagation effect in the DMA architecture. Next, we propose a solution based on semi-definite programming and alternating optimization. Results show that a DMA-based structure can outperform a fully-digital implementation and that the required transmit power decreases with the antenna array size, while it increases and remains almost constant with frequency in DMA and FD, respectively.

How to cite this publication

Amirhossein Azarbahram, Onel L. Alcaraz López, Richard Demo Souza, Rui Zhang, Matti Latva‐aho (2023). Energy Beamforming for RF Wireless Power Transfer With Dynamic Metasurface Antennas. IEEE Wireless Communications Letters, 13(3), pp. 781-785, DOI: 10.1109/lwc.2023.3343563.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2023

Authors

5

Datasets

0

Total Files

0

Language

English

Journal

IEEE Wireless Communications Letters

DOI

10.1109/lwc.2023.3343563

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access