0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessRadio frequency (RF) wireless power transfer (WPT) is a promising technology for charging the Internet of Things. Practical RF-WPT systems usually require energy beamforming (EB), which can compensate for the severe propagation loss by directing beams toward the devices. The EB flexibility depends on the transmitter architecture, existing a trade-off between cost/complexity and degrees of freedom. Thus, simpler architectures such as dynamic metasurface antennas (DMAs) are gaining attention. Herein, we consider an RF-WPT system with a transmit DMA for meeting the energy harvesting requirements of multiple devices and formulate an optimization problem for the minimum-power design. First, we provide a mathematical model to capture the frequency-dependant signal propagation effect in the DMA architecture. Next, we propose a solution based on semi-definite programming and alternating optimization. Results show that a DMA-based structure can outperform a fully-digital implementation and that the required transmit power decreases with the antenna array size, while it increases and remains almost constant with frequency in DMA and FD, respectively.
Amirhossein Azarbahram, Onel L. Alcaraz López, Richard Demo Souza, Rui Zhang, Matti Latva‐aho (2023). Energy Beamforming for RF Wireless Power Transfer With Dynamic Metasurface Antennas. IEEE Wireless Communications Letters, 13(3), pp. 781-785, DOI: 10.1109/lwc.2023.3343563.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2023
Authors
5
Datasets
0
Total Files
0
Language
English
Journal
IEEE Wireless Communications Letters
DOI
10.1109/lwc.2023.3343563
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access