Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Encoding Electronic Properties by Synthesis of Axial Modulation-Doped Silicon Nanowires

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2005

Encoding Electronic Properties by Synthesis of Axial Modulation-Doped Silicon Nanowires

0 Datasets

0 Files

English
2005
Science
Vol 310 (5752)
DOI: 10.1126/science.1118798

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Charles M. Lieber
Charles M. Lieber

Harvard University

Verified
Yang Chen
Zhaohui Zhong
Charles M. Lieber

Abstract

We describe the successful synthesis of modulation-doped silicon nanowires by achieving pure axial elongation without radial overcoating during the growth process. Scanning gate microscopy shows that the key properties of the modulated structures-including the number, size, and period of the differentially doped regions-are defined in a controllable manner during synthesis, and moreover, that feature sizes to less than 50 nanometers are possible. Electronic devices fabricated with designed modulation-doped nanowire structures demonstrate their potential for lithography-independent address decoders and tunable, coupled quantum dots in which changes in electronic properties are encoded by synthesis rather than created by conventional lithography-based techniques.

How to cite this publication

Yang Chen, Zhaohui Zhong, Charles M. Lieber (2005). Encoding Electronic Properties by Synthesis of Axial Modulation-Doped Silicon Nanowires. Science, 310(5752), pp. 1304-1307, DOI: 10.1126/science.1118798.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2005

Authors

3

Datasets

0

Total Files

0

Language

English

Journal

Science

DOI

10.1126/science.1118798

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access