0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessModern computing facilities grant access to first-principles density-functional theory study of complex physical and chemical phenomena in materials, that require large supercell to properly model the system. However, supercells are associated to small Brillouin zones in the reciprocal space, leading to folded electronic eigenstates that make the analysis and interpretation extremely challenging. Various techniques have been proposed and developed in order to reconstruct the electronic band structures of super cells, unfolded into the reciprocal space of an ideal primitive cell. Here, we propose an efficient unfolding scheme embedded directly in the Vienna Ab-initio Simulation Package (VASP), that requires modest computational resources and allows for an automatized mapping from the reciprocal space of the supercell to primitive cell Brillouin zone. This algorithm can computes band structures, Fermi surfaces and spectral functions, by using an integrated post-processing tool (bands4vasp). The method is here applied to a selected variety of complex physical situations: the effect of doping on the band dispersion in the BaFe$_{\rm 2(1-x)}$Ru$_{\rm 2x}$As$_2$ superconductor, the interaction between adsorbates and polaronic states on the TiO$_2$(110) surface, and the band splitting induced by non-collinear spin fluctuations in EuCd$_2$As$_2$.
David Dirnberger, Kresse Georg, Cesare Franchini, Michele Reticcioli (2021). Electronic State Unfolding for Plane Waves: Energy Bands, Fermi Surfaces, and Spectral Functions. The Journal of Physical Chemistry C, 125(23), pp. 12921-12928, DOI: 10.1021/acs.jpcc.1c02318.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2021
Authors
4
Datasets
0
Total Files
0
Language
English
Journal
The Journal of Physical Chemistry C
DOI
10.1021/acs.jpcc.1c02318
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access