0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThe electronic densities of states of atomically resolved single-walled carbon nanotubes have been investigated using scanning tunneling microscopy. Peaks in the density of states due to the one-dimensional nanotube band structure have been characterized and compared with tight-binding calculations. In addition, tunneling spectroscopy measurements recorded along the axis of an atomically resolved nanotube were found to exhibit new, low-energy peaks in the density of states near the tube end. Calculations suggest that these features arise from the specific arrangement of carbon atoms that close the nanotube end.
Philip Kim, Teri W. Odom, Jin-Lin Huang, Charles M. Lieber (1999). Electronic Density of States of Atomically Resolved Single-Walled Carbon Nanotubes: Van Hove Singularities and End States. Physical Review Letters, 82(6), pp. 1225-1228, DOI: 10.1103/physrevlett.82.1225.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
1999
Authors
4
Datasets
0
Total Files
0
Language
English
Journal
Physical Review Letters
DOI
10.1103/physrevlett.82.1225
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access