RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Electrical modulation of weak-antilocalization and spin–orbit interaction in dual gated Ge/Si core/shell nanowires

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2017

Electrical modulation of weak-antilocalization and spin–orbit interaction in dual gated Ge/Si core/shell nanowires

0 Datasets

0 Files

English
2017
Semiconductor Science and Technology
Vol 32 (9)
DOI: 10.1088/1361-6641/aa7ce6

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Charles M. Lieber
Charles M. Lieber

Harvard University

Verified
Rui Wang
Russell Deacon
Jun Yao
+2 more

Abstract

Magnetic transport of holes in Ge/Si core/shell nanowires (NWs) is investigated under the control of dual electrical gating. The strength of the spin–orbit interaction (SOI) is analyzed from the weak-antilocalization (WAL) of the magnetoconductance (MC) as a function of a perpendicular magnetic field. By superimposing a small alternating signal on the voltage offset of both gates the universal conductance fluctuations are largely removed from the averaged MC traces, enabling a good fitting to WAL theory models. The tuning of both spin lifetime and the SOI strength is observed in the NWs with dual gating while the carrier density is kept constant. We observe an enhancement of spin lifetime with the mean free path due to the effect of geometrical confinement. The measured SOI energy of 1–6 meV may arise from the dipole coupled Rashba SOI, which is predicted to be one order of magnitude larger than the conventional Rashba coefficient in the Ge/Si core/shell NW system. A clear electrostatic modulation of SOI strength by a factor of up to three implies that Ge/Si NWs are a promising platform for the study of helical states, Majorana fermions and spin–orbit qubits.

How to cite this publication

Rui Wang, Russell Deacon, Jun Yao, Charles M. Lieber, Koji Ishibashi (2017). Electrical modulation of weak-antilocalization and spin–orbit interaction in dual gated Ge/Si core/shell nanowires. Semiconductor Science and Technology, 32(9), pp. 094002-094002, DOI: 10.1088/1361-6641/aa7ce6.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2017

Authors

5

Datasets

0

Total Files

0

Language

English

Journal

Semiconductor Science and Technology

DOI

10.1088/1361-6641/aa7ce6

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access