Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Efficiency of grey wolf optimization algorithm for damage detection of skeletal structures via expanded mode shapes

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2020

Efficiency of grey wolf optimization algorithm for damage detection of skeletal structures via expanded mode shapes

0 Datasets

0 Files

English
2020
Advances in Structural Engineering
Vol 23 (13)
DOI: 10.1177/1369433220921000

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Wael A. Altabey
Wael A. Altabey

Alexandria University

Verified
Parsa Ghannadi
Seyed Sina Kourehli
Mohammad Noori
+1 more

Abstract

Vibration-based structural damage identification through optimization techniques has become an interesting research topic in recent years. Dynamic characteristics such as frequencies and mode shapes are used to construct the objective function. The objective functions based on only frequencies are not very sensitive to damage in large structures. However, objective functions based on both mode shapes and frequencies are very effective. In real measurement condition, the number of installed sensors is limited, and there are no economic reasons for measuring the mode shapes at all degrees of freedom. In this kind of circumstances, mode expansion methods are used to address the incompleteness of mode shapes. In this article, the system equivalent reduction and expansion process is applied to determine the unmeasured mode shapes. Two experimental examples including a cantilever beam and a truss tower are investigated to show system equivalent reduction and expansion process’ efficiency in estimating unmeasured mode shapes. The results show that the technique used for expansion is influential. Damage identification is formulated as an optimization problem, and the residual force vector based on expanded mode shapes is considered as an objective function. In order to minimize the objective function, grey wolf optimization and Harris hawks optimization are used. Numerical studies on a 56-bar dome space truss and experimental validation on a steel frame are performed to demonstrate the efficiency of the developed approach. Both numerical and experimental results indicate that the combination of the grey wolf optimization and expanded mode shapes with system equivalent reduction and expansion process can provide a reliable approach for determining the severities and locations of damage of skeletal structures when it compares with those obtained by Harris hawks optimization.

How to cite this publication

Parsa Ghannadi, Seyed Sina Kourehli, Mohammad Noori, Wael A. Altabey (2020). Efficiency of grey wolf optimization algorithm for damage detection of skeletal structures via expanded mode shapes. Advances in Structural Engineering, 23(13), pp. 2850-2865, DOI: 10.1177/1369433220921000.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2020

Authors

4

Datasets

0

Total Files

0

Language

English

Journal

Advances in Structural Engineering

DOI

10.1177/1369433220921000

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access