0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThe sizing of air valves during the air expulsion phase in rapid filling processes is crucial for design purposes. Mathematical models have been developed to simulate the behaviour of air valves during filling processes for air expulsion, utilising 1D and 2D schemes. These transient events involve the presence of two fluids with different properties and behaviours (water and air). The effect of air valves under scenarios of controlled filling processes has been studied by various authors; however, the analysis of uncontrolled filling processes using air valves has not yet been considered. In this scenario, water columns reach high velocities, causing part of them to close air valves, which generates an additional peak in air pocket pressure patterns. In this research, a two-dimensional computational fluid dynamics model is developed in OpenFOAM software to simulate the studied situations.
Andres M. Aguirre-Mendoza, Duban A. Paternina-Verona, Sebastián Oyuela, Oscar Coronado-hernández, Mohsen Besharat, Vicente S. Fuertes-Miquel, Pedro L. Iglesias‐Rey, Helena M. Ramos (2022). Effects of Orifice Sizes for Uncontrolled Filling Processes in Water Pipelines. Water, 14(6), pp. 888-888, DOI: 10.3390/w14060888.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2022
Authors
8
Datasets
0
Total Files
0
Language
English
Journal
Water
DOI
10.3390/w14060888
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access