Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Effective medium modelling of real-world multi-modal metamaterial panels achieving broadband vibroacoustic attenuation

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2024

Effective medium modelling of real-world multi-modal metamaterial panels achieving broadband vibroacoustic attenuation

0 Datasets

0 Files

English
2024
Extreme Mechanics Letters
Vol 69
DOI: 10.1016/j.eml.2024.102161

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Edwin Reynders
Edwin Reynders

University Of Leuven

Verified
Daniele Giannini
Edwin Reynders

Abstract

Locally resonant metamaterials can achieve unprecedented vibroacoustic performance by subwavelength distributions of small mechanical resonators on a host structure. Substantial broadband vibroacoustic attenuation can be achieved by multi-modal metamaterial panels, which exploit multiple translational and rotational resonator modes to manipulate the overall bending wave propagation. However, the multi-modal metamaterial concept has been studied only for idealized conditions, such as infinite panel extent and uniformly distributed resonators, limiting practical applicability. Efficient methodologies are still needed to study the behaviour of multi-modal metamaterial panels in real-world scenarios. In this work, this challenge is tackled by developing generalized effective medium models, i.e., homogenized material representations through equivalent macro-scale properties, tailored for finite-sized multi-modal metamaterial panels. For the special but important case of simply supported rectangular panels with uniformly distributed resonators, a dedicated analytical effective medium model is developed. For arbitrary boundary conditions and resonator distributions, effective medium finite elements are formulated. The diffuse sound transmission loss (STL) performance is efficiently predicted through Deterministic - Statistical Energy Analysis (Det-SEA), by coupling the effective medium model of the finite-sized metamaterial panel with a diffuse model of the surrounding sound fields. The proposed prediction approaches are validated against detailed FEM modelling, demonstrating that significant computational reductions are achieved while preserving accuracy. Results showcase that multi-modal metamaterial panels maintain broadband vibracoustic attenuation also when subjected to boundary effects and under partial metamaterial treatment.

How to cite this publication

Daniele Giannini, Edwin Reynders (2024). Effective medium modelling of real-world multi-modal metamaterial panels achieving broadband vibroacoustic attenuation. Extreme Mechanics Letters, 69, pp. 102161-102161, DOI: 10.1016/j.eml.2024.102161.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2024

Authors

2

Datasets

0

Total Files

0

Language

English

Journal

Extreme Mechanics Letters

DOI

10.1016/j.eml.2024.102161

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access