RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Effective Charging of Commercial Lithium Cell by Triboelectric Nanogenerator with Ultrahigh Voltage Energy Management

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2024

Effective Charging of Commercial Lithium Cell by Triboelectric Nanogenerator with Ultrahigh Voltage Energy Management

0 Datasets

0 Files

en
2024
Vol 11 (30)
Vol. 11
DOI: 10.1002/advs.202404253

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Zhong Lin Wang
Zhong Lin Wang

Beijing Institute of Technology

Verified
Yiming Dai
Guoxu Liu
Jie Cao
+9 more

Abstract

It is an increasingly mature application solution that triboelectric nanogenerator (TENG) supplies power to electronic devices through its power management system (PMS). However, the previous PMS is able to manage a limited voltage magnitude and the energy storage elements are limited to capacitors. This work proposes an ultrahigh voltage PMS (UV-PMS) to realize the charging of commercial lithium cells (LCs) by TENG. The design of UV-PMS enables energy management of TENGs with ultrahigh open-circuit voltages up to 3500 V and boosts the peak charging current from 30.9 µA to 2.77 mA, an increase of 89.64 times. With the introduction of UV-PMS, the effective charging capacity of LC charged by a TENG at a working frequency of 1.5 Hz for 1 h comes to 429.7 µAh, making a 75.3 times enhancement compared to charging by TENG directly. The maximum charging power comes to 1.56 mW. The energy storage efficiency is above 97% and the overall charge efficiency can be maintained at 81.2%. This work provides a reliable strategy for TENG to store energy in LC, and has promising applications in energy storage, LC's life, and self-powered systems.

How to cite this publication

Yiming Dai, Guoxu Liu, Jie Cao, Beibei Fan, Weilin Zhou, Yongbo Li, Jun Yang, Ming Li, Jianhua Zeng, Yuanfen Chen, Zhong Lin Wang, Chi Zhang (2024). Effective Charging of Commercial Lithium Cell by Triboelectric Nanogenerator with Ultrahigh Voltage Energy Management. , 11(30), DOI: https://doi.org/10.1002/advs.202404253.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2024

Authors

12

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1002/advs.202404253

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access