RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Effect of train fire location on maximum smoke temperature beneath the subway tunnel ceiling

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2020

Effect of train fire location on maximum smoke temperature beneath the subway tunnel ceiling

0 Datasets

0 Files

English
2020
Tunnelling and Underground Space Technology
Vol 97
DOI: 10.1016/j.tust.2020.103282

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Long Shi
Long Shi

University Of Science And Technology Of China

Verified
Cong Wei
Long Shi
Zhicheng Shi
+4 more

Abstract

Smoke temperature beneath tunnel ceiling is one of the most important parameters to determine its fire safety. A double long-narrow space is formed when a subway train stops inside a tunnel, where the smoke movement is quite different from those inside traditional road or train tunnel. The related smoke distributions beneath the tunnel ceiling in this double long-narrow space have been rarely investigated previously. Therefore, through this study, the effect of train fire location on the maximum smoke temperature beneath the subway tunnel ceiling were investigated both numerically and theoretically. Results showed that the smoke temperature beneath the tunnel ceiling is closely related to the spill plume through the train door, which is significantly affected by the fire location. The maximum smoke temperature beneath the tunnel ceiling increases exponentially as the fire source moves away from the train center. A modified model was then developed to predict the maximum temperatures under the spill plume considering various heat release rates and fire locations.

How to cite this publication

Cong Wei, Long Shi, Zhicheng Shi, Min Peng, Hui Yang, Shaogang Zhang, Xudong Cheng (2020). Effect of train fire location on maximum smoke temperature beneath the subway tunnel ceiling. Tunnelling and Underground Space Technology, 97, pp. 103282-103282, DOI: 10.1016/j.tust.2020.103282.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2020

Authors

7

Datasets

0

Total Files

0

Language

English

Journal

Tunnelling and Underground Space Technology

DOI

10.1016/j.tust.2020.103282

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access