Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Edge-Based Transfer Learning for Classroom Occupancy Detection in a Smart Campus Context

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2022

Edge-Based Transfer Learning for Classroom Occupancy Detection in a Smart Campus Context

0 Datasets

0 Files

English
2022
Sensors
Vol 22 (10)
DOI: 10.3390/s22103692

Get instant academic access to this publication’s datasets.

Create free accountHow it works
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Silvia Mirri
Silvia Mirri

Institution not specified

Verified
Lorenzo Monti
Rita Tse
Su-Kit Tang
+4 more

Abstract

Studies and systems that are aimed at the identification of the presence of people within an indoor environment and the monitoring of their activities and flows have been receiving more attention in recent years, specifically since the beginning of the COVID-19 pandemic. This paper proposes an approach for people counting that is based on the use of cameras and Raspberry Pi platforms, together with an edge-based transfer learning framework that is enriched with specific image processing strategies, with the aim of this approach being adopted in different indoor environments without the need for tailored training phases. The system was deployed on a university campus, which was chosen as the case study. The proposed system was able to work in classrooms with different characteristics. This paper reports a proposed architecture that could make the system scalable and privacy compliant and the evaluation tests that were conducted in different types of classrooms, which demonstrate the feasibility of this approach. Overall, the system was able to count the number of people in classrooms with a maximum mean absolute error of 1.23.

How to cite this publication

Lorenzo Monti, Rita Tse, Su-Kit Tang, Silvia Mirri, Giovanni Delnevo, Vittorio Maniezzo, Paola Salomoni (2022). Edge-Based Transfer Learning for Classroom Occupancy Detection in a Smart Campus Context. Sensors, 22(10), pp. 3692-3692, DOI: 10.3390/s22103692.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2022

Authors

7

Datasets

0

Total Files

0

Language

English

Journal

Sensors

DOI

10.3390/s22103692

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration