Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Dynamic stiffness parameter assessment of cracked reinforced concrete beams: A numerical and experimental study

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2024

Dynamic stiffness parameter assessment of cracked reinforced concrete beams: A numerical and experimental study

0 Datasets

0 Files

English
2024
Engineering Structures
Vol 318
DOI: 10.1016/j.engstruct.2024.118758

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Menno Van De Velde
Menno Van De Velde

University Of Leuven

Verified
Eline Vandecruys
Max A.N. Hendriks
Menno Van De Velde
+2 more

Abstract

A major challenge of infrastructure management is to predict the remaining capacity of degrading structures and safely prolong their lifetime. In reinforced concrete (RC) structures, concrete cracking has a significant effect on durability and stiffness properties. Structural integrity degradation is often assessed by estimating the global stiffness loss through vibration-based structural health monitoring. Yet, this is challenging as the modal characteristics might also be affected by environmental and support conditions. At the same time, the development of models that enable studying the modal characteristics of cracked concrete structures has received little attention so far. This paper proposes a novel, visual inspection-based method to predict the decrease in effective elastic moduli of existing concrete structures from observed longitudinal and transverse cracks which are typical for corrosion and load-induced damage in RC elements. Discrete and smeared finite element models are developed to establish a relation between the geometrical crack properties and the changes in the concrete’s smeared dynamic stiffness parameters, as defined within an orthotropic material model. It is found that the crack pattern has a significant influence, with transverse cracks generally reducing the stiffness parameters more than longitudinal cracks. Experimental data support the proposed relations’ ability to tune the parameters of the orthotropic material model based on crack properties from corroded or mechanically loaded RC beams. The proposed relations enhance the assessment of serviceability limit states in RC beams and offer a valuable tool to evaluate dynamic test data obtained from on-site monitoring.

How to cite this publication

Eline Vandecruys, Max A.N. Hendriks, Menno Van De Velde, Geert Lombaert, Els Verstrynge (2024). Dynamic stiffness parameter assessment of cracked reinforced concrete beams: A numerical and experimental study. Engineering Structures, 318, pp. 118758-118758, DOI: 10.1016/j.engstruct.2024.118758.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2024

Authors

5

Datasets

0

Total Files

0

Language

English

Journal

Engineering Structures

DOI

10.1016/j.engstruct.2024.118758

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access