0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessA major challenge of infrastructure management is to predict the remaining capacity of degrading structures and safely prolong their lifetime. In reinforced concrete (RC) structures, concrete cracking has a significant effect on durability and stiffness properties. Structural integrity degradation is often assessed by estimating the global stiffness loss through vibration-based structural health monitoring. Yet, this is challenging as the modal characteristics might also be affected by environmental and support conditions. At the same time, the development of models that enable studying the modal characteristics of cracked concrete structures has received little attention so far. This paper proposes a novel, visual inspection-based method to predict the decrease in effective elastic moduli of existing concrete structures from observed longitudinal and transverse cracks which are typical for corrosion and load-induced damage in RC elements. Discrete and smeared finite element models are developed to establish a relation between the geometrical crack properties and the changes in the concrete’s smeared dynamic stiffness parameters, as defined within an orthotropic material model. It is found that the crack pattern has a significant influence, with transverse cracks generally reducing the stiffness parameters more than longitudinal cracks. Experimental data support the proposed relations’ ability to tune the parameters of the orthotropic material model based on crack properties from corroded or mechanically loaded RC beams. The proposed relations enhance the assessment of serviceability limit states in RC beams and offer a valuable tool to evaluate dynamic test data obtained from on-site monitoring.
Eline Vandecruys, Max A.N. Hendriks, Menno Van De Velde, Geert Lombaert, Els Verstrynge (2024). Dynamic stiffness parameter assessment of cracked reinforced concrete beams: A numerical and experimental study. Engineering Structures, 318, pp. 118758-118758, DOI: 10.1016/j.engstruct.2024.118758.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2024
Authors
5
Datasets
0
Total Files
0
Language
English
Journal
Engineering Structures
DOI
10.1016/j.engstruct.2024.118758
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access