Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Dynamic response reconstruction for structural health monitoring using densely connected convolutional networks

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2020

Dynamic response reconstruction for structural health monitoring using densely connected convolutional networks

0 Datasets

0 Files

en
2020
Vol 20 (4)
Vol. 20
DOI: 10.1177/1475921720916881

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Jun Li
Jun Li

Institution not specified

Verified
Gao Fan
Jun Li
Hong Hao

Abstract

This article proposes a novel dynamic response reconstruction approach for structural health monitoring using densely connected convolutional networks. Skip connection and dense block techniques are carefully applied in the designed network architecture, which greatly facilitates the information flow, and increases the training efficiency and accuracy of feature extraction and propagation with fewer parameters in the network. Sub-pixel shuffling and dropout techniques are used in the designed network and applied to reduce the computational demand and improve training efficiency. The network is trained in a supervised manner, where the input and output are the measurements of the available channels at response available locations and desired channels at response unavailable locations. The proposed densely connected convolutional networks automatically extract the high-level features of the input data and construct the complicated nonlinear relationship between the responses of available and desired locations. Experimental studies are conducted using the measured acceleration responses from Guangzhou New Television Tower to investigate the effects of the locations of available responses, the numbers of available and unavailable channels, and measurement noise. The results demonstrate that the proposed approach can accurately reconstruct the responses in both time and frequency domains with strong noise immunity. The reconstructed response is further used for modal identification to demonstrate the usability and accuracy of the reconstructed responses. The applicability of the proposed approach for structural health monitoring is further proved by the highly consistent modal parameters identified from the reconstructed and true responses.

How to cite this publication

Gao Fan, Jun Li, Hong Hao (2020). Dynamic response reconstruction for structural health monitoring using densely connected convolutional networks. , 20(4), DOI: https://doi.org/10.1177/1475921720916881.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2020

Authors

3

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1177/1475921720916881

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access