0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThis article proposes a novel dynamic response reconstruction approach for structural health monitoring using densely connected convolutional networks. Skip connection and dense block techniques are carefully applied in the designed network architecture, which greatly facilitates the information flow, and increases the training efficiency and accuracy of feature extraction and propagation with fewer parameters in the network. Sub-pixel shuffling and dropout techniques are used in the designed network and applied to reduce the computational demand and improve training efficiency. The network is trained in a supervised manner, where the input and output are the measurements of the available channels at response available locations and desired channels at response unavailable locations. The proposed densely connected convolutional networks automatically extract the high-level features of the input data and construct the complicated nonlinear relationship between the responses of available and desired locations. Experimental studies are conducted using the measured acceleration responses from Guangzhou New Television Tower to investigate the effects of the locations of available responses, the numbers of available and unavailable channels, and measurement noise. The results demonstrate that the proposed approach can accurately reconstruct the responses in both time and frequency domains with strong noise immunity. The reconstructed response is further used for modal identification to demonstrate the usability and accuracy of the reconstructed responses. The applicability of the proposed approach for structural health monitoring is further proved by the highly consistent modal parameters identified from the reconstructed and true responses.
Gao Fan, Jun Li, Hong Hao (2020). Dynamic response reconstruction for structural health monitoring using densely connected convolutional networks. , 20(4), DOI: https://doi.org/10.1177/1475921720916881.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2020
Authors
3
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1177/1475921720916881
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access