Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Dynamic Mechanical Strength Prediction of BFRC Based on Stacking Ensemble Learning and Genetic Algorithm Optimization

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2023

Dynamic Mechanical Strength Prediction of BFRC Based on Stacking Ensemble Learning and Genetic Algorithm Optimization

0 Datasets

0 Files

English
2023
Buildings
Vol 13 (5)
DOI: 10.3390/buildings13051155

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Jiayan Zheng
Jiayan Zheng

Institution not specified

Verified
Jiayan Zheng
Wang Ming-hui
Tianchen Yao
+2 more

Abstract

Split Hopkinson pressure bar (SHPB) tests are usually used to determine the dynamic mechanical strength of basalt-fiber-reinforced concrete (BFRC), but this test method is time-consuming and expensive. This paper makes predictions about the dynamic mechanical strength of BFRC by employing machine learning (ML) algorithms and feature sets drawn from experimental data from prior works. However, there is still the problem of improving the accuracy of the dynamic mechanical strength prediction by the BFRC, which remains a challenge. Using stacking ensemble learning and genetic algorithms (GA) to optimize parameters, this study proposes a prediction method that combines these two techniques for obtaining accurate predictions. This method is composed of three parts: (1) the training uses multiple base learners, and the algorithms employed by the learners include extreme gradient boosting (XGBoost), gradient boosting (GB), random forest (RF), and support vector regression (SVR); (2) multi-base learners are combined using a stacking strategy to obtain the final prediction; and (3) using GA, the parameters are optimized in the prediction model. An experiment was conducted to compare the proposed approach with popular techniques for machine learning. In the study, the stacking ensemble algorithm integrated the base learner prediction results to improve the model’s performance and the GA further improved prediction accuracy. As a result of the application of the method, the dynamic mechanical strength of BFRC can be predicted with high accuracy. A SHAP analysis was also conducted using the stacking model to determine how important the contributing properties are and the sensitivity of the stacking model. Based on the results of this study, it was found that in the SHPB test, the strain rate had the most significant influence on the DIF, followed by the specimen diameter and the compressive strength.

How to cite this publication

Jiayan Zheng, Wang Ming-hui, Tianchen Yao, Yichen Tang, Haijing Liu (2023). Dynamic Mechanical Strength Prediction of BFRC Based on Stacking Ensemble Learning and Genetic Algorithm Optimization. Buildings, 13(5), pp. 1155-1155, DOI: 10.3390/buildings13051155.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2023

Authors

5

Datasets

0

Total Files

0

Language

English

Journal

Buildings

DOI

10.3390/buildings13051155

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access