0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThis technical report describes a dynamic causal model of the spread of coronavirus through a population. The model is based upon ensemble or population dynamics that generate outcomes, like new cases and deaths over time. The purpose of this model is to quantify the uncertainty that attends predictions of relevant outcomes. By assuming suitable conditional dependencies, one can model the effects of interventions (e.g., social distancing) and differences among populations (e.g., herd immunity) to predict what might happen in different circumstances. Technically, this model leverages state-of-the-art variational (Bayesian) model inversion and comparison procedures, originally developed to characterise the responses of neuronal ensembles to perturbations. Here, this modelling is applied to epidemiological populations-to illustrate the kind of inferences that are supported and how the model
Karl Friston, Thomas Parr, Peter Zeidman, Adeel Razi, Guillaume Flandin, Jean Daunizeau, Oliver J. Hulme, Alexander J. Billig, Vladimir Litvak, Rosalyn Moran, Cathy J. Price, Christian Lambert (2020). Dynamic causal modelling of COVID-19. , 5, DOI: https://doi.org/10.12688/wellcomeopenres.15881.1.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Preprint
Year
2020
Authors
12
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.12688/wellcomeopenres.15881.1
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access