Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Driving style classification and recognition methods for connected vehicle control in intelligent transportation systems: A review

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2025

Driving style classification and recognition methods for connected vehicle control in intelligent transportation systems: A review

0 Datasets

0 Files

English
2025
ISA Transactions
DOI: 10.1016/j.isatra.2025.01.033

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Hamid Reza Karimi
Hamid Reza Karimi

Politecnico di Milano

Verified
Peng Mei
Hamid Reza Karimi
L.J Ou
+4 more

Abstract

Advancements in intelligent vehicle technology have spurred extensive research into the impact of driving style (DS) on intelligent transportation systems (ITS), aiming to enhance vehicle safety, comfort, and energy efficiency. Accurate DS identification is pivotal for accelerating ITS adoption, especially in regions where its implementation is still in its infancy. This paper investigates the role of DS recognition methods, particularly clustering and classification techniques, in influencing connected vehicle control and optimizing speed planning within ITS. While traditional speed planning approaches focus on general traffic models, this study emphasizes the critical role of DS in shaping personalized and adaptive speed planning. The paper highlights three primary DS recognition approaches: rule-based, model-based, and learning-based methods, and introduces a framework for integrating DS recognition with speed planning, addressing aspects such as data collection, preprocessing, and classification techniques. This focus provides a novel perspective on leveraging DS recognition to enhance ITS adaptability.

How to cite this publication

Peng Mei, Hamid Reza Karimi, L.J Ou, He‐Hui Xie, Chang’an A. Zhan, Guangyuan Li, Shichun Yang (2025). Driving style classification and recognition methods for connected vehicle control in intelligent transportation systems: A review. ISA Transactions, DOI: 10.1016/j.isatra.2025.01.033.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2025

Authors

7

Datasets

0

Total Files

0

Language

English

Journal

ISA Transactions

DOI

10.1016/j.isatra.2025.01.033

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access