RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Dominant mycorrhizal association of trees determines soil nitrogen availability in subtropical forests

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2022

Dominant mycorrhizal association of trees determines soil nitrogen availability in subtropical forests

0 Datasets

0 Files

English
2022
Geoderma
Vol 427
DOI: 10.1016/j.geoderma.2022.116135

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Yakov Kuzyakov
Yakov Kuzyakov

Institution not specified

Verified
Huimin Lei
Liang Chen
Hui Wang
+8 more

Abstract

Trees and their associated arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) fungi drive carbon (C) and nitrogen (N) cycling patterns. However, the mechanisms underpinning this relationship and the degree to which mycorrhiza mediate the effects of forest tree composition on soil N cycling outside of the temperate zone remain unclear. Here, we conducted field surveys to establish a natural gradient with increasing ECM tree dominance in subtropical forests, and explored the effects of tree mycorrhizal associations on soil N cycling. Across this mycorrhizal gradient, we quantified soil available N, microbial biomass N, net N transformation rates, as well as N-acquiring enzyme activities, litterfall biomass and quality, and soil pH during the one-year growing season. We found that with increasing ECM tree dominance, the dissolved organic N and nitrate N decreased, while the microbial biomass N increased linearly. Soils dominated by AM trees had 1.8–2.3 times larger mineral N contents, net N mineralization rate, and net nitrification rate than ECM-dominated stands, suggesting a rapid N cycling in AM-dominated stands. ECM trees and their associated fungi reduce the net N mineralization rate in topsoil mainly by producing recalcitrant litterfall (i.e., higher C:N) and by secreting β-N-acetylglucosaminidase to deplete N directly from soil organic matter, which together increased N limitation for free-living decomposers. The low pH and high C:N ratio in ECM-dominated soils inhibit the proliferation of ammonia-oxidizers and thus decrease the net nitrification rate. Our results demonstrate that the increasing ECM tree dominance increase soil N-acquiring enzyme activity and C:N ratio but decrease pH value, all of them critically mediating soil N availability. Consequently, by altering the relative abundances of tree mycorrhizal associations shifts in forest composition under global changes and plantation establishment can be expected to result in altered soil N cycling.

How to cite this publication

Huimin Lei, Liang Chen, Hui Wang, Xiaoxu Qi, Jiaqi Liu, Shuai Ouyang, Xiangwen Deng, Pifeng Lei, Guigang Lin, Yakov Kuzyakov, Wenhua Xiang (2022). Dominant mycorrhizal association of trees determines soil nitrogen availability in subtropical forests. Geoderma, 427, pp. 116135-116135, DOI: 10.1016/j.geoderma.2022.116135.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2022

Authors

11

Datasets

0

Total Files

0

Language

English

Journal

Geoderma

DOI

10.1016/j.geoderma.2022.116135

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access