Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Does human movement-induced airflow elevate infection risk in burn patient’s isolation ward? A validated dynamics numerical simulation approach

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2023

Does human movement-induced airflow elevate infection risk in burn patient’s isolation ward? A validated dynamics numerical simulation approach

0 Datasets

0 Files

English
2023
Energy and Buildings
Vol 283
DOI: 10.1016/j.enbuild.2023.112810

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Mohd Hafiz Dzarfan Othman
Mohd Hafiz Dzarfan Othman

Universiti Teknologi Malaysia

Verified
Huiyi Tan
Keng Yinn Wong
Mohd Hafiz Dzarfan Othman
+11 more

Abstract

An isolation ward requires a highly controlled and contamination-free environment since the settling of bacteria-carrying particles (shed by medical staff) on patients’ wounds could cause infections. The present study examines the effect of medical staff’s walking movement on airflow distribution and particle dispersion. Three different walking speeds of 0.25 m/s, 0.5 m/s, and 1.0 m/s were assigned to the medical staff. An RNG k-ɛ model based on the Reynolds-Averaged Navier-Stokes (RANS) equation was adopted to predict the airflow, while a Lagrangian tracking approach was selected to track particle dispersion. The reliability of the selected airflow turbulent model and particle tracking approach was validated using published data. The present study showed that the low-pressure region behind the moving medical staff’s body has induced wake. The higher walking speed of 1.00 m/s produced a significant secondary airflow of 1.12 m/s, while 0.25 m/s and 0.5 m/s generated lower secondary airflow of 0.41 m/s and 0.53 m/s, respectively. The number of particles settled on the patient at 0.25 m/s, 0.50 m/s, and 1.00 m/s were 31, 18 and 5, respectively. Present finding indicated that a higher walking speed reduces the number of particles settled on the burn patient, therefore potentially reducing the associated nosocomial infection risk.

How to cite this publication

Huiyi Tan, Keng Yinn Wong, Mohd Hafiz Dzarfan Othman, Bemgba Bevan Nyakuma, Desmond Daniel Chin Vui Sheng, Hong Yee Kek, Wai Shin Ho, Haslenda Hashim, Meng Choung Chiong, Muhammad Afiq Zubir, Nur Haliza Abdul Wahab, Syie Luing Wong, Roswanira Abdul Wahab, Ihab Hasan Hatif (2023). Does human movement-induced airflow elevate infection risk in burn patient’s isolation ward? A validated dynamics numerical simulation approach. Energy and Buildings, 283, pp. 112810-112810, DOI: 10.1016/j.enbuild.2023.112810.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2023

Authors

14

Datasets

0

Total Files

0

Language

English

Journal

Energy and Buildings

DOI

10.1016/j.enbuild.2023.112810

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access