0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThis paper addresses the problem of distributed online generalized Nash equilibrium (GNE) learning for multi-cluster games with delayed feedback information. Specifically, each agent in the game is assumed to be informed a sequence of local cost functions and constraint functions, which are known to the agent with time-varying delays subsequent to decision-making at each round. The objective of each agent within a cluster is to collaboratively optimize the cluster's cost function, subject to time-varying coupled inequality constraints and local feasible set constraints over time. Additionally, it is assumed that each agent is required to estimate the decisions of all other agents through interactions with its neighbors, rather than directly accessing the decisions of all agents, i.e., each agent needs to make decision under partial-decision information. To solve such a challenging problem, a novel distributed online delay-tolerant GNE learning algorithm is developed based upon the primal-dual algorithm with an aggregation gradient mechanism. The system-wise regret and the constraint violation are formulated to measure the performance of the algorithm, demonstrating sublinear growth with respect to time under certain conditions. Finally, numerical results are presented to verify the effectiveness of the proposed algorithm.
Bingqian Liu, Guanghui Wen, Xiao Fang, Tingwen Huang, Guanrong Chen (2024). Distributed online generalized Nash Equilibrium learning in multi-cluster games: A delay-tolerant algorithm. arXiv (Cornell University), DOI: 10.48550/arxiv.2407.03578.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Preprint
Year
2024
Authors
5
Datasets
0
Total Files
0
Language
English
Journal
arXiv (Cornell University)
DOI
10.48550/arxiv.2407.03578
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access