0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessPipeline filling and emptying are critical hydraulic procedures involving transient two-phase air–water interactions, which can cause pressure surges and structural risks. Traditional Digital Twin models rely on one-dimensional (1D) approaches, which cannot capture air–water interactions. This study integrates Computational Fluid Dynamics (CFD) models into a Digital Twin framework for improved predictive analysis. A CFD-based Digital Twin is developed and validated using real-time pressure measurements, incorporating 2D and 3D CFD models, mesh sensitivity analysis, and calibration procedures. Key contributions include a CFD-driven Digital Twin for real-time monitoring and machine learning (ML) techniques to optimise pressure surges. ML models trained with experimental and CFD data reduce reliance on computationally expensive CFD simulations. Among the 31 algorithms tested, decision trees, efficient linear models, and ensemble classifiers achieved 100% accuracy for filling processes, while k-Nearest Neighbours (KNN) provided 97.2% accuracy for emptying processes. These models effectively predict hazardous pressure peaks and vacuum conditions, confirming their reliability in optimising pipeline operations while significantly reducing computational time.
Duban A. Paternina-Verona, Oscar Coronado-hernández, Vicente S. Fuertes-Miquel, Manuel Saba, Helena M. Ramos (2025). Digital Twin Based on CFD Modelling for Analysis of Two-Phase Flows During Pipeline Filling–Emptying Procedures. Applied Sciences, 15(5), pp. 2643-2643, DOI: 10.3390/app15052643.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2025
Authors
5
Datasets
0
Total Files
0
Language
English
Journal
Applied Sciences
DOI
10.3390/app15052643
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access