0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessDictionary representations and deep learning Autoencoder (AE) models have proven effective in hyperspectral anomaly detection. Dictionary representations offer self-explanation but struggle with complex scenarios. Conversely, autoencoders can capture details in complex scenes but lack self-explanation. Complex scenarios often involve extensive spatial information, making its utilization crucial in hyperspectral anomaly detection. To effectively combine the advantages of both methods and address the insufficient use of spatial information, we propose an attention constrained low-rank and sparse autoencoder for hyperspectral anomaly detection. This model includes two encoders: an attention constrained low-rank autoencoder (AClrAE) trained with a background dictionary and incorporating a Global Self-Attention Module (GAM) to focus on global spatial information, resulting in improved background reconstruction; and an attention constrained sparse autoencoder (ACsAE) trained with an anomaly dictionary and incorporating a Local Self-Attention Module (LAM) to focus on local spatial information, resulting in enhanced anomaly reconstruction. Finally, to merge the detection results from both encoders, a nonlinear fusion scheme is employed. Experiments on multiple real and synthetic datasets demonstrate the effectiveness and feasibility of the proposed method.
Xing Hu, Zhixuan Li, Lingkun Luo, Hamid Reza Karimi, Dawei Zhang (2024). Dictionary Trained Attention Constrained Low Rank and Sparse Autoencoder for Hyperspectral Anomaly Detection. Neural Networks, 181, pp. 106797-106797, DOI: 10.1016/j.neunet.2024.106797.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2024
Authors
5
Datasets
0
Total Files
0
Language
English
Journal
Neural Networks
DOI
10.1016/j.neunet.2024.106797
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access