Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Dictionary Trained Attention Constrained Low Rank and Sparse Autoencoder for Hyperspectral Anomaly Detection

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2024

Dictionary Trained Attention Constrained Low Rank and Sparse Autoencoder for Hyperspectral Anomaly Detection

0 Datasets

0 Files

English
2024
Neural Networks
Vol 181
DOI: 10.1016/j.neunet.2024.106797

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Hamid Reza Karimi
Hamid Reza Karimi

Politecnico di Milano

Verified
Xing Hu
Zhixuan Li
Lingkun Luo
+2 more

Abstract

Dictionary representations and deep learning Autoencoder (AE) models have proven effective in hyperspectral anomaly detection. Dictionary representations offer self-explanation but struggle with complex scenarios. Conversely, autoencoders can capture details in complex scenes but lack self-explanation. Complex scenarios often involve extensive spatial information, making its utilization crucial in hyperspectral anomaly detection. To effectively combine the advantages of both methods and address the insufficient use of spatial information, we propose an attention constrained low-rank and sparse autoencoder for hyperspectral anomaly detection. This model includes two encoders: an attention constrained low-rank autoencoder (AClrAE) trained with a background dictionary and incorporating a Global Self-Attention Module (GAM) to focus on global spatial information, resulting in improved background reconstruction; and an attention constrained sparse autoencoder (ACsAE) trained with an anomaly dictionary and incorporating a Local Self-Attention Module (LAM) to focus on local spatial information, resulting in enhanced anomaly reconstruction. Finally, to merge the detection results from both encoders, a nonlinear fusion scheme is employed. Experiments on multiple real and synthetic datasets demonstrate the effectiveness and feasibility of the proposed method.

How to cite this publication

Xing Hu, Zhixuan Li, Lingkun Luo, Hamid Reza Karimi, Dawei Zhang (2024). Dictionary Trained Attention Constrained Low Rank and Sparse Autoencoder for Hyperspectral Anomaly Detection. Neural Networks, 181, pp. 106797-106797, DOI: 10.1016/j.neunet.2024.106797.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2024

Authors

5

Datasets

0

Total Files

0

Language

English

Journal

Neural Networks

DOI

10.1016/j.neunet.2024.106797

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access