RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Deterministic Synthesis of Pd Nanocrystals Enclosed by High-Index Facets and Their Enhanced Activity toward Formic Acid Oxidation

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2023

Deterministic Synthesis of Pd Nanocrystals Enclosed by High-Index Facets and Their Enhanced Activity toward Formic Acid Oxidation

0 Datasets

0 Files

en
2023
Vol 1 (6)
Vol. 1
DOI: 10.1021/prechem.3c00060

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Younan Xia
Younan Xia

Institution not specified

Verified
Maochang Liu
Siyu Zhou
Sang‐Il Choi
+1 more

Abstract

Noble-metal nanocrystals enclosed by high-index facets are of growing interest due to their enhanced catalytic performance in a variety of reactions. Herein, we report the deterministic synthesis of Pd nanocrystals encased by high-index facets by controlling the rate of deposition (Vdeposition) relative to that of surface diffusion (Vdiffusion). For octahedral seeds with truncated corners, a reduction rate (and thus deposition rate) faster than that of surface diffusion (i.e., Vdeposition/Vdiffusion > 1) led to the formation of concave trisoctahedra (TOH) with high-index facets. When the reduction was slowed down, in contrast, surface diffusion dominated the growth pathway. In the case of Vdeposition/Vdiffusion ≈ 1, truncated octahedra with enlarged sizes were produced. When the reduction rate was between these two extremes, we obtained concave tetrahexahedra (THH) without or with truncation. Similar growth patterns were also observed for the cuboctahedral seeds. When the Pd octahedra, concave TOH, and concave THH were tested for electrocatalyzing the formic acid oxidation (FAO) reaction, those with high-index facets were advantageous over the conventional Pd octahedra enclosed by {111} facets. This work not only contributes to the understanding of surface diffusion and its role in nanocrystal growth but also offers a general protocol for the synthesis of nanocrystals enclosed by high-index facets.

How to cite this publication

Maochang Liu, Siyu Zhou, Sang‐Il Choi, Younan Xia (2023). Deterministic Synthesis of Pd Nanocrystals Enclosed by High-Index Facets and Their Enhanced Activity toward Formic Acid Oxidation. , 1(6), DOI: https://doi.org/10.1021/prechem.3c00060.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2023

Authors

4

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1021/prechem.3c00060

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access