0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThe microtopography of tidal freshwater forested wetlands (TFFWs) impacts biogeochemical processes affecting the carbon and nitrogen dynamics, ecological parameters, and habitat diversity. However, it is challenging to quantify low-relief microtopographic features that might only vary by a few tens of centimeters. We assess the high-resolution fine-scale microtopographic features of a TFFW with terrestrial LiDAR and aerial LiDAR to test a method appropriate to quantify microtopography in low-relief forested wetlands. Our method uses a combination of water-level and elevation thresholding (WALET) to delineate hollows in terrestrial and aerial LiDAR data. Close-range remote sensing technologies can be used for microtopography in forested regions. However, the aerial and terrestrial LiDAR technologies have not been used to analyze or compare microtopographic features in TFFW ecosystems. Therefore, the objectives of this study were (1) to characterize and assess the microtopography of low-relief tidal freshwater forested wetlands and (2) to identify optimal elevation thresholds for widely available aerial LiDAR data to characterize low-relief microtopography. Our results suggest that the WALET method can correctly characterize the microtopography in this area of low-relief topography. The microtopography characterization method described here provides a basis for advanced applications and scaling mechanistic models.
Tarini Shukla, Wenwu Tang, Carl Trettin, Shenen Chen, Craig Allan (2024). Determination of Microtopography of Low-Relief Tidal Freshwater Forested Wetlands Using LiDAR. Remote Sensing, 16(18), pp. 3463-3463, DOI: 10.3390/rs16183463.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2024
Authors
5
Datasets
0
Total Files
0
Language
English
Journal
Remote Sensing
DOI
10.3390/rs16183463
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access