0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessMobile Ad hoc Network or MANET is a wireless network that allows communication between the nodes that are in range of each other and are self-configuring. The distributed administration and dynamic nature of MANET makes it vulnerable to many kind of security attacks. One such attack is Black hole attack which is a well known security threat. A node drops all packets which it should forward, by claiming that it has the shortest path to the destination. Intrusion Detection system identifies the unauthorized users in the system. An IDS collects and analyses audit data to detect unauthorized users of computer systems. This paper aims in identifying Black-Hole attack against AODV with Intrusion Detection System, to analyze the attack and find its countermeasure.
Gayathri Nagasubramanian, Rakesh Kumar Sakthivel, Rizwan Patan, Anahid Ehtemami, Anke Meyer‐Baese, Amirhessam Tahmassebi, Amir Gandomi (2020). Detection and isolation of black hole attack in mobile ad hoc networks - a review. , DOI: 10.1117/12.2557080.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2020
Authors
7
Datasets
0
Total Files
0
Language
English
DOI
10.1117/12.2557080
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access