0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessMemristor is an ideal electronic device used as an artificial nerve synapse due to its unique memory function. This article presents a design of a new Hopfield neural network (HNN) that can generate multiscroll attractors by utilizing a new memristor as a synapse in the HNN. Differing from the others, this memristor is constructed with hyperbolic tangent functions. Taking the memristor as a self-feedback synapse of a neuron in the HNN, the memristive HNN can yield multidouble-scroll attractors, and its parameters can be used to effectively control the number of double scrolls contained in an attractor. Interestingly, the generation of multidouble-scroll attractors is independent of the memductance function but depends only on the internal state equation. Thus, the memductance function can be adjusted to yield various complex dynamical behaviors. Moreover, amplitude control effects and quantitatively controllable multistability are revealed by numerical analysis. The accurate reproduction of some dynamical behaviors by a designed circuit verifies the correctness of the numerical analysis. Finally, based on the proposed memristive HNN, a novel image encryption scheme in the 3-D setting is designed and evaluated, demonstrating its good encryption performances.
Qiang Lai, Zhiqiang Wan, Hui Zhang, Guanrong Chen (2022). Design and Analysis of Multiscroll Memristive Hopfield Neural Network With Adjustable Memductance and Application to Image Encryption. IEEE Transactions on Neural Networks and Learning Systems, 34(10), pp. 7824-7837, DOI: 10.1109/tnnls.2022.3146570.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2022
Authors
4
Datasets
0
Total Files
0
Language
English
Journal
IEEE Transactions on Neural Networks and Learning Systems
DOI
10.1109/tnnls.2022.3146570
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access