Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Deep Reinforcement Based Optimization of Function Splitting in Virtualized Radio Access Networks

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2021

Deep Reinforcement Based Optimization of Function Splitting in Virtualized Radio Access Networks

0 Datasets

0 Files

English
2021
2022 IEEE International Conference on Communications Workshops (ICC Workshops)
DOI: 10.1109/iccworkshops50388.2021.9473703

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Matti Latva-aho
Matti Latva-aho

University Of Oulu

Verified
Fahri Wisnu Murti
Samad Ali
Matti Latva-aho

Abstract

Virtualized Radio Access Network (vRAN) is one of the key enablers of future wireless networks as it brings the agility to the radio access network (RAN) architecture and offers degrees of design freedom. Yet, it also creates a challenging problem on how to design the functional split configuration. In this paper, a deep reinforcement learning approach is proposed to optimize function splitting in vRAN. A learning paradigm is developed that optimizes the location of functions in the RAN. These functions can be placed either at a central/cloud unit (CU) or a distributed unit (DU). This problem is formulated as constrained neural combinatorial reinforcement learning to minimize the total network cost. In this solution, a policy gradient method with Lagrangian relaxation is applied that uses a stacked long short-term memory (LSTM) neural network architecture to approximate the policy. Then, a sampling technique with a temperature hyperparameter is applied for the inference process. The results show that our proposed solution can learn the optimal function split decision and solve the problem with a 0.4% optimality gap. Moreover, our method can reduce the cost by up to 320% compared to a distributed-RAN (D-RAN). We also conclude that altering the traffic load and routing cost does not significantly degrade the optimality performance.

How to cite this publication

Fahri Wisnu Murti, Samad Ali, Matti Latva-aho (2021). Deep Reinforcement Based Optimization of Function Splitting in Virtualized Radio Access Networks. 2022 IEEE International Conference on Communications Workshops (ICC Workshops), pp. 1-6, DOI: 10.1109/iccworkshops50388.2021.9473703.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2021

Authors

3

Datasets

0

Total Files

0

Language

English

Journal

2022 IEEE International Conference on Communications Workshops (ICC Workshops)

DOI

10.1109/iccworkshops50388.2021.9473703

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access