0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessWith the booming of cyber attacks and cyber criminals against cyber-physical systems (CPSs), detecting these attacks remains challenging. It might be the worst of times, but it might be the best of times because of opportunities brought by machine learning (ML), in particular deep learning (DL). In general, DL delivers superior performance to ML because of its layered setting and its effective algorithm for extract useful information from training data. DL models are adopted quickly to cyber attacks against CPS systems. In this survey, a holistic view of recently proposed DL solutions is provided to cyber attack detection in the CPS context. A six-step DL driven methodology is provided to summarize and analyze the surveyed literature for applying DL methods to detect cyber attacks against CPS systems. The methodology includes CPS scenario analysis, cyber attack identification, ML problem formulation, DL model customization, data acquisition for training, and performance evaluation. The reviewed works indicate great potential to detect cyber attacks against CPS through DL modules. Moreover, excellent performance is achieved partly because of several high-quality datasets that are readily available for public use. Furthermore, challenges, opportunities, and research trends are pointed out for future research.
Jun Zhang, Lei Pan, Qinglong Qinglong Han, Chao Chen, Sheng Wen, Yang Xiang (2021). Deep Learning Based Attack Detection for Cyber-Physical System Cybersecurity: A Survey. IEEE/CAA Journal of Automatica Sinica, 9(3), pp. 377-391, DOI: 10.1109/jas.2021.1004261.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2021
Authors
6
Datasets
0
Total Files
0
Language
English
Journal
IEEE/CAA Journal of Automatica Sinica
DOI
10.1109/jas.2021.1004261
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access