RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Decomposition of Intermolecular Interaction Energies within the Local Pair Natural Orbital Coupled Cluster Framework

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2016

Decomposition of Intermolecular Interaction Energies within the Local Pair Natural Orbital Coupled Cluster Framework

0 Datasets

0 Files

English
2016
Journal of Chemical Theory and Computation
Vol 12 (10)
DOI: 10.1021/acs.jctc.6b00523

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Frank Neese
Frank Neese

Max Planck

Verified
Wolfgang Schneider
Giovanni Bistoni
Manuel Sparta
+4 more

Abstract

The local coupled cluster method DLPNO-CCSD(T) allows calculations on systems containing hundreds of atoms to be performed while typically reproducing canonical CCSD(T) energies with chemical accuracy. In this work, we present a scheme for decomposing the DLPNO-CCSD(T) interaction energy between two molecules into physical meaningful contributions, providing a quantification of the most important components of the chemical interaction. The method, called Local Energy Decomposition (LED), is straightforward and requires negligible additional computing time. Both the Hartree-Fock and the correlation energy are decomposed into contributions from localized or pairs of localized occupied orbitals. Assigning these localized orbitals to fragments allows one to differentiate between intra- and intermolecular contributions to the interaction energy. Accordingly, the interaction energy can be decomposed into electronic promotion, electrostatic, exchange, dynamic charge polarization, and dispersion contributions. The LED scheme is applied to a number of test cases ranging from weakly, dispersively bound complexes to systems with strong ionic interactions. The dependence of the results on the one-particle basis set and various technical aspects, such as the localization scheme, are carefully studied in order to ensure that the results do not suffer from technical artifacts. A numerical comparison between the DLPNO-CCSD(T)/LED and the popular symmetry adapted perturbation theory (DFT-SAPT) is made, and the limitations of the proposed scheme are discussed.

How to cite this publication

Wolfgang Schneider, Giovanni Bistoni, Manuel Sparta, Masaaki Saitow, Christoph Riplinger, Alexander A. Auer, Frank Neese (2016). Decomposition of Intermolecular Interaction Energies within the Local Pair Natural Orbital Coupled Cluster Framework. Journal of Chemical Theory and Computation, 12(10), pp. 4778-4792, DOI: 10.1021/acs.jctc.6b00523.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2016

Authors

7

Datasets

0

Total Files

0

Language

English

Journal

Journal of Chemical Theory and Computation

DOI

10.1021/acs.jctc.6b00523

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access