0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessLichens and bryophytes are abundant primary producers in high latitude and high elevation ecosystems, and they play an important role in ecosystem processes such as decomposition and nutrient cycling. Despite their importance, little is known about the decomposability of lichens and bryophytes either among or within species, at the whole community level, or how this decomposability is affected by their functional traits. Here, we studied decomposability of lichens and bryophytes at the community‐level and individual species‐level (using 21 species and genera) collected from an elevational gradient in alpine Norway. In order to isolate the elevation effect on litter quality, we used a standardized laboratory bioassay to measure decomposability. In contrast to our expectations, we found that community‐level decomposability of lichens and bryophytes increased with elevation and thus decreasing temperature. In contrast, phosphorus release from the litter decreased with elevation while nitrogen release was unresponsive. Decomposability was explained by nutrient concentrations, litter pH and primary producer group identity (lichens versus bryophytes) at both the individual species and community levels. Species turnover (changes in species composition and abundance) was the main driver of decomposability across elevation at the community level, despite some of the traits explaining decomposability showing high intraspecific variability. Our study highlights the importance of among‐species variation in determining lichen and bryophyte decomposability. Further, the higher decomposability that we found for higher elevations suggests that global warming might result in a shift towards slower decomposable lichen and bryophyte species.
Kristel van Zuijlen, Ruben E. Roos, Kari Klanderud, Simone I. Lang, David A. Wardle, Johan Asplund (2020). Decomposability of lichens and bryophytes from across an elevational gradient under standardized conditions. Oikos, 129(9), pp. 1358-1368, DOI: 10.1111/oik.07257.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2020
Authors
6
Datasets
0
Total Files
0
Language
English
Journal
Oikos
DOI
10.1111/oik.07257
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access