RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Decision rules for determining terrestrial movement and the consequences for filtering high-resolution GPS tracks – A case study using the African Lion (Panthera leo)

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Preprint
en
2021

Decision rules for determining terrestrial movement and the consequences for filtering high-resolution GPS tracks – A case study using the African Lion (Panthera leo)

0 Datasets

0 Files

en
2021
DOI: 10.21203/rs.3.rs-600317/v1

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Carlos M. Duarte
Carlos M. Duarte

King Abdullah University of Science and Technology

Verified
Stephen H. Bell
Nikki J. Marks
Nigel C. Bennett
+16 more

Abstract

Abstract The combined use of Global Positioning System (GPS) technology and motion sensors within the discipline of movement ecology has increased over recent years. This is particularly the case for instrumented wildlife, with many studies now opting to record parameters at high (infra-second) sampling frequency. However, the detail with which GPS loggers can elucidate fine-scale movement depends on the precision and accuracy of fixes, with accuracy (specifically, location error and fix success rate) being affected by signal reception. We hypothesised that animal behaviour was the main factor affecting fix inaccuracy (particularly for collar-mounted tags sampling at high frequency). In conjunction to this, inherent GPS positional noise (‘jitter’), would be most apparent during GPS fixes for non-moving locations, thereby producing disproportionate error during rest periods. A Movement Verified Filtering (MVF) protocol was constructed to compare GPS-derived speed data to dynamic body acceleration (DBA). This was collected by a simultaneously deployed tri-axial accelerometer, to provide a computationally quick method for identifying genuine travelling movement. This method was tested on 11 free-ranging lions ( Panthera leo ) within the Kgalagadi Transfrontier park in the Kalahari Desert, fitted with collar-mounted GPS units and tri-axial motion sensors (Daily Diary; DD) recording at 1 and 40 Hz, respectively. The findings support the hypothesis and show that distance moved estimates were, on average, overestimated by > 80 % prior to GPS screening. We present the conceptual and mathematical protocols for screening fix inaccuracy within high resolution GPS datasets. We demonstrate the importance that MVF has for avoiding inaccurate and biased estimates of movement and caution the accuracy of findings from previous studies that employed minimal GPS pre-processing . Throughout, we address the applicability of comparing fine-scale indices of GPS- and motion sensor-borne data in tandem to qualify animal behaviour.

How to cite this publication

Stephen H. Bell, Nikki J. Marks, Nigel C. Bennett, Sam M. Ferreira, Danny Govender, Pauli Viljoen, Angela Bruns, O. Louis van Schalkwyk, Mads F. Bertelsen, Carlos M. Duarte, Martin C. van Rooyen, Craig J. Tambling, Aoife Göppert, Delmar Diesel, D. Michael Scantlebury, Richard Gunner, Rory P. Wilson, Mark D. Holton, Phil Hopkins (2021). Decision rules for determining terrestrial movement and the consequences for filtering high-resolution GPS tracks – A case study using the African Lion (Panthera leo). , DOI: https://doi.org/10.21203/rs.3.rs-600317/v1.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Preprint

Year

2021

Authors

19

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.21203/rs.3.rs-600317/v1

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access