0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessAbstract Endothelial cells (ECs) constitute the inner lining of vascular beds in mammals and are crucial for homeostatic regulation of blood vessel physiology, but also play a key role in pathogenesis of many diseases, thereby representing realistic therapeutic targets. However, it has become evident that ECs are heterogeneous, encompassing several subtypes with distinct functions, which makes EC targeting and modulation in diseases challenging. The rise of the new single-cell era has led to an emergence of studies aimed at interrogating transcriptome diversity along the vascular tree, and has revolutionized our understanding of EC heterogeneity from both a physiological and pathophysiological context. Here, we discuss recent landmark studies aimed at teasing apart the heterogeneous nature of ECs. We cover driving (epi)genetic, transcriptomic, and metabolic forces underlying EC heterogeneity in health and disease, as well as current strategies used to combat disease-enriched EC phenotypes, and propose strategies to transcend largely descriptive heterogeneity towards prioritization and functional validation of therapeutically targetable drivers of EC diversity. Lastly, we provide an overview of the most recent advances and hurdles in single EC OMICs.
Lisa M. Becker, Shiau-Haln Chen, Julie Rodor, Laura de Rooij, Andrew H. Baker, Peter Carmeliet (2022). Deciphering endothelial heterogeneity in health and disease at single-cell resolution: progress and perspectives. , 119(1), DOI: https://doi.org/10.1093/cvr/cvac018.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2022
Authors
6
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1093/cvr/cvac018
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access