0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessA decentralized unscented Kalman filter (UKF) method based on a consensus algorithm for multi-area power system dynamic state estimation is presented in this paper. The overall system is split into a certain number of non-overlapping areas. Firstly, each area executes its own dynamic state estimation based on local measurements by using the UKF. Next, the consensus algorithm is required to perform only local communications between neighboring areas to diffuse local state information. Finally, according to the global state information obtained by the consensus algorithm, the UKF is run again for each area. Its performance is compared with the distributed UKF without consensus algorithm on the IEEE 14-bus and 118-bus systems. The low communication requirements and high estimation accuracy of the decentralized UKF make it an alternative solution to the multi-area power system dynamic state estimation.
Xiangyun Qing, Hamid Reza Karimi, Yugang Niu, Xingyu Wang (2014). Decentralized unscented Kalman filter based on a consensus algorithm for multi-area dynamic state estimation in power systems. International Journal of Electrical Power & Energy Systems, 65, pp. 26-33, DOI: 10.1016/j.ijepes.2014.09.024.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2014
Authors
4
Datasets
0
Total Files
0
Language
English
Journal
International Journal of Electrical Power & Energy Systems
DOI
10.1016/j.ijepes.2014.09.024
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access