0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessDisruption of circadian rhythms, daily oscillations in biological processes that are regulated by an endogenous clock, has been linked to tumorigenesis. Normal and malignant tissues often show asynchronies in cell proliferation and metabolic rhythms. Cancer chronotherapy takes biological time into account to improve the therapy. However, alterations of the circadian clock machinery genes have rarely been reported in human cancer. Herein, we show that the BMAL1 gene, a core component of the circadian clock, is transcriptionally silenced by promoter CpG island hypermethylation in hematologic malignancies, such as diffuse large B-cell lymphoma and acute lymphocytic and myeloid leukemias. We also describe how BMAL1 reintroduction in hypermethylated leukemia/lymphoma cells causes growth inhibition in colony assays and nude mice, whereas BMAL1 depletion by RNA interference in unmethylated cells enhances tumor growth. We also show that BMAL1 epigenetic inactivation impairs the characteristic circadian clock expression pattern of genes such as C-MYC, catalase, and p300 in association with a loss of BMAL1 occupancy in their respective promoters. Furthermore, the DNA hypermethylation–associated loss of BMAL1 also prevents the recruitment of its natural partner, the CLOCK protein, to their common targets, further enhancing the perturbed circadian rhythm of the malignant cells. These findings suggest that BMAL1 epigenetic inactivation contributes to the development of hematologic malignancies by disrupting the cellular circadian clock. [Cancer Res 2009;69(21):8447–54]
Hiroaki Taniguchi, Agustín F. Fernández, Fernando Setién, Santiago Ropero, Esteban Ballestar, Alberto Villanueva, Hiroyuki Yamamoto, Kohzoh Imai, Yasuhisa Shinomura, Manel Esteller (2023). Data from Epigenetic Inactivation of the Circadian Clock Gene <i>BMAL1</i> in Hematologic Malignancies. , DOI: https://doi.org/10.1158/0008-5472.c.6498915.v1.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Preprint
Year
2023
Authors
10
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1158/0008-5472.c.6498915.v1
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access