0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Join our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessPowder X-ray diffraction (XRD) is a foundational technique for characterizing crystalline materials. However, the reliable interpretation of XRD patterns, particularly in multiphase systems, remains a manual and expertise-demanding task. As a characterization method that only provides structural information, multiple reference phases can often be fit to a single pattern, leading to potential misinterpretation when alternative solutions are overlooked. To ease humans' efforts and address the challenge, we introduce Dara (Data-driven Automated Rietveld Analysis), a framework designed to automate the robust identification and refinement of multiple phases from powder XRD data. Dara performs an exhaustive tree search over all plausible phase combinations within a given chemical space and validates each hypothesis using a robust Rietveld refinement routine (BGMN). Key features include structural database filtering, automatic clustering of isostructural phases during tree expansion, peak-matching-based scoring to identify promising phases for refinement. When ambiguity exists, Dara generates multiple hypothesis which can then be decided between by human experts or with further characteriztion tools. By enhancing the reliability and accuracy of phase identification, Dara enables scalable analysis of realistic complex XRD patterns and provides a foundation for integration into multimodal characterization workflows, moving toward fully self-driving materials discovery.
Yuxing Fei, Matthew J. McDermott, Christopher L. Rom, Shilong Wang, Gerbrand Ceder (2025). Dara: Automated multiple-hypothesis phase identification and refinement from powder X-ray diffraction. , DOI: https://doi.org/10.48550/arxiv.2510.19667.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Preprint
Year
2025
Authors
5
Datasets
0
Total Files
0
DOI
https://doi.org/10.48550/arxiv.2510.19667
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free AccessYes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration