0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessAbstract In this article, a cylindrical direct‐current triboelectric nanogenerator (DC‐TENG) that can generate an almost constant current output with a low crest factor by phase coupling is reported for the first time. Here, the influence of phases (P) and groups (G) on the DC‐TENG is investigated. Experiments show that the crest factor of current, significantly decreases as the phases increase, and the output performance significantly increases as the groups increase. One phase triboelectric power‐generating unit of the DC‐TENG with three‐phase and five‐group (3P5G) produces an open‐circuit voltage of 149.5 V, short‐circuit current 7.3 μA, and transferred charge of 56.7 nC at 600 rpm. The DC‐TENG can produce a coupling current of 21.6 μA and the average output power of 2.04 mW after each phase output is rectified and superimposed. Additionally, the crest factor of output current is reduced to 1.08, and the high‐performance characteristics of an almost constant direct‐current is achieved. The research is of considerable significance to the practical applications of TENGs in powering sensors of low consumption.
Jianlong Wang, Yikang Li, Zhijie Xie, Yuhong Xu, Jianwen Zhou, Tinghai Cheng, Hongwei Zhao, Zhong Lin Wang (2020). Cylindrical Direct‐Current Triboelectric Nanogenerator with Constant Output Current. , 10(10), DOI: https://doi.org/10.1002/aenm.201904227.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2020
Authors
8
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1002/aenm.201904227
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access