RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Cross-Lingual Taxonomy Alignment with Bilingual Biterm Topic Model

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2016

Cross-Lingual Taxonomy Alignment with Bilingual Biterm Topic Model

0 Datasets

0 Files

English
2016
Proceedings of the AAAI Conference on Artificial Intelligence
Vol 30 (1)
DOI: 10.1609/aaai.v30i1.9979

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Haofen Wang
Haofen Wang

Tongji University

Verified
Tianxing Wu
Guilin Qi
Haofen Wang
+2 more

Abstract

As more and more multilingual knowledge becomes available on the Web, knowledge sharing across languages has become an important task to benefit many applications. One of the most crucial kinds of knowledge on the Web is taxonomy, which is used to organize and classify the Web data. To facilitate knowledge sharing across languages, we need to deal with the problem of cross-lingual taxonomy alignment, which discovers the most relevant category in the target taxonomy of one language for each category in the source taxonomy of another language. Current approaches for aligning cross-lingual taxonomies strongly rely on domain-specific information and the features based on string similarities. In this paper, we present a new approach to deal with the problem of cross-lingual taxonomy alignment without using any domain-specific information. We first identify the candidate matched categories in the target taxonomy for each category in the source taxonomy using the cross-lingual string similarity. We then propose a novel bilingual topic model, called Bilingual Biterm Topic Model (BiBTM), to perform exact matching. BiBTM is trained by the textual contexts extracted from the Web. We conduct experiments on two kinds of real world datasets. The experimental results show that our approach significantly outperforms the designed state-of-the-art comparison methods.

How to cite this publication

Tianxing Wu, Guilin Qi, Haofen Wang, Kang Xu, Xuan Cui (2016). Cross-Lingual Taxonomy Alignment with Bilingual Biterm Topic Model. Proceedings of the AAAI Conference on Artificial Intelligence, 30(1), DOI: 10.1609/aaai.v30i1.9979.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2016

Authors

5

Datasets

0

Total Files

0

Language

English

Journal

Proceedings of the AAAI Conference on Artificial Intelligence

DOI

10.1609/aaai.v30i1.9979

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access