Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Critical review on membrane designs for enhanced flux performance in membrane distillation

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2023

Critical review on membrane designs for enhanced flux performance in membrane distillation

0 Datasets

0 Files

English
2023
Desalination
Vol 553
DOI: 10.1016/j.desal.2023.116484

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Mohd Hafiz Dzarfan Othman
Mohd Hafiz Dzarfan Othman

Universiti Teknologi Malaysia

Verified
Zhong Sheng Tai
Mohd Hafiz Dzarfan Othman
Khong Nee Koo
+1 more

Abstract

Membrane distillation (MD) is a hybrid of thermal and membrane processes that utilizes a hydrophobic membrane to separate volatile solutes from feed solution at fairly high temperatures. This process is known to be capable of achieving excellent separation efficiency at low pressure. However, the commercialization of MD has been hampered by low flux performance. To date, different membrane designs have been introduced to ameliorate the flux performance of MD membranes. This article aims to review four key membrane innovations that could enhance the flux performance of MD including the phase inversion-based asymmetric membrane structures, hydrophobic/hydrophilic membrane structures, electrospun nanofibrous membranes (ENMs), and the incorporation of carbon materials. The state-of-the-art of these developments and their recent research trends have been extensively discussed. An update-to-date review of high-flux MD membrane innovations have also been provided. The economic potential of MD membranes is addressed in the final part of this article.

How to cite this publication

Zhong Sheng Tai, Mohd Hafiz Dzarfan Othman, Khong Nee Koo, Juhana Jaafar (2023). Critical review on membrane designs for enhanced flux performance in membrane distillation. Desalination, 553, pp. 116484-116484, DOI: 10.1016/j.desal.2023.116484.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2023

Authors

4

Datasets

0

Total Files

0

Language

English

Journal

Desalination

DOI

10.1016/j.desal.2023.116484

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access