0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessAbstract DNA methylation confers epigenetic regulation on gene expression and thereby on various biological processes. Tomato has emerged as an excellent system to study the function of DNA methylation in plant development. To date, regulation and function of DNA methylation maintenance remains unclear in tomato plants. Here, we report the critical function of tomato ( Solanum lycopersicum ) Methyltransferase 1 (SlMET1) in plant development and DNA methylome and transcriptome regulation. Using CRISPR‐Cas9 gene editing, we generated slmet1 mutants and observed severe developmental defects with a frame‐shift mutation, including small and curly leaves, defective inflorescence, and parthenocarpy. In leaf tissues, mutations in SlMET1 caused CG hypomethylation and CHH hypermethylation on a whole‐genome scale, leading to a disturbed transcriptome including ectopic expression of many RIN target genes such as ACC2 in leaf tissues, which are normally expressed in fruits. Neither the CG hypomethylation nor CHH hypermethylation in the slmet1 mutants is related to tissue culture. Meanwhile, tissue culture induces non‐CG hypomethylation, which occurs more frequently at gene regions than at TE regions. Our results depict SlMET1‐ and tissue culture‐dependent tomato DNA methylomes, and that SlMET1 is required for maintaining a normal transcriptome and normal development of tomato.
Yu Yang, Kai Tang, Tatsiana Datsenka, Wen‐Shan Liu, Suhui Lv, Zhaobo Lang, Xingang Wang, Jinghui Gao, Wei Wang, Wen‐Feng Nie, Zhaoqing Chu, Heng Zhang, Avtar K. Handa, Jian Kang Zhu, Huiming Zhang (2019). Critical function of DNA methyltransferase 1 in tomato development and regulation of the DNA methylome and transcriptome. , 61(12), DOI: https://doi.org/10.1111/jipb.12778.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2019
Authors
15
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1111/jipb.12778
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access